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A b s M L  By employing the Debye-GNneisen model, the lattice vibration effects are 
inmrporated into the first-principles scheme to calculate the heats of formation of 
disordered phases for Au-based alloys. Significant improvement over the previous results 
without lattice vibration effects is achieved for the Au€u system; this can be attributed 
to the fairly strong temperature dependence of the bulk modulus of constituent elements. 

1. hboduction 

Recently, study of the alloy phase stability based on the first-principles approach has 
been advanced by various methods [IS]. In most of these studies, the following 
two-step approach has been adopted: the first step is to extract the effective cluster 
interaction energies by using the cluster expansion method (CEM) [6] to evaluate the 
total energies in the ground state by electronic structure calculation based on the 
local-density-functional approximation for the selected ordered phases including pure 
metals; the second step is to estimate the configurational entropy by either the cluster 
variation method (CVM) [7j or Monte Carlo calculation [SI. Although such methods 
have been successful in yielding the main topological features of a phase diagram, 
serious discrepancies with the experimental phase diagram have been reported [I] 
for the order-disorder transition temperature and width of the single-phase field of 
the ordered phase. These are particularly emphasized for a system which has a large 
difference between the atomic sizes of its constituent elements. 

The discrepancies can be partly attributed to neglect of the lattice vibration 
effect including anharmonicity. Since the anharmonicity in the lattice vibration is 
closely related to the elastic properties of a system such as thermal expansion and 
bulk modulus, neglecting this effect causes an error in determining the transition 
temperature, solubility limit, etc, which are affected by softening of the lattice at 
elevated temperatures. 

Although the lattice dynamics are a central concern of solid state physics and 
various sophisticated approaches to determine the phonon-related properties have 
been attempted, most of them are not fully compatible with the present first-principles 
formalism of alloy phase stability. An efficient procedure for incorporating the lattice 
vibration effecfs in a quasi-harmonic approximation, however, has been proposed by 
Mormzi et nl [9] for a pure element and extended by Becker et al [lo] for an alloy 
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system based on the Debye-Griineisen model. By employing this method, the present 
study is undertaken to examine the lattice vibration effects on the calculated heats 
of formation of a disordered solid state solution for three Au-based alloy systems: 
Au-Cu, Au-Pd and Au-Ag. 

In fact, the thermodynamic properties including the phase diagram for 
these systems have been calculated from first-principles [1,2,11,12,17], and the 
concentration dependences of the heats of formation obtained are in fairly reasonable 
agreement with experiment for the Au-Ag and Au-Pd systems. Serious discrepancies 
with experimental results, however, have been found for the AwCu system. The 
calculated heats of formation are systematically underestimated over the entire 
concentration range. Since the atomic sizes of Cu and Au differ by 12%, a large 
elastic energy is anticipated to be involved in the estimated heats of formation, 
which is believed to be the main source of the discrepancy. The excess elastic energy, 
however, could be partly relaxed when softening of the lattice at elevated temperatures 
is properly taken into consideration. Therefore, instead of employing a unique set 
of the energies evaluated in the ground state for the entire temperature range of 
interest, introduction of the temperature dependence into the effective interaction 
energies is essential. 

The organization of the present paper is as follows. The main emphasis of the 
present study is placed on the Au-Cu system. In the next section, the calculation 
procedure and the theoretical background are briefly reviewed. The final section is ' 

devoted to results and discussion. 

2. Calculation procedure 

The calculation procedure of the conventional first-principles method without thermal 
vibration effects, has been amply demonstrated in previous reports [l-5,11,12]. 
Hence, only the essential recipe [9,10] for introducing the thermal vibration effects 
is briefly reproduced for completeness. 

The principal ingredient is to derive a free energy F(")(r,  T) for a phase m, 
where m represents A4 ( m  = 1) and B4 (m = 5) with a FCC structure, &B 
(m = 2) and AB, (m = 4) with an L1, structure, and A2B2 (m = 3) with an L1, 
structure, from the electronic binding energy curve E:Y)(r)  evaluated by electronic 
structure calculation for a phase m in the ground state for a given lattice parameter 
T. In the present work, we adopt the augmented-spherical-wave (ASW) method [U], 
setting the angular momentum cut-off I , ,  for the basis function to be I,, = 2 
for Cu, Ag and Pd and l,,, = 3 for Au. Relativistic effects except for the spin- 
orbit interaction are included following the prescription proposed by Koelling and 
Harmon 1241. Even though this correction has relatively minor effects for the fourth- 
and fifth-row elements Cu, Pd and Ag, it sometimes changes qualitative aspects of 
the phase stability for alloys including heavier elements such as Au [25]. In order to 
ensure consistency, we included the relativistic effects for the lighter elements. 

In general, F(m)( r-,  T) is given as the sum of three terms as follows: 

where T is the lattice constant, and E : r ) ( r ) ,  E$:)( r-,  T) and S::)(T, T) are the 
electronic binding energy, the thermal vibration energy and the vibration entropy, 
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respectively. In the DebyeGriineisen model 191, the vibration energy is given by 

EiTL)(r, T )  = Eu + 3kBTD(0,/T) (2) 
where kB is the Boltzmann constant, 0, is the Debye temperature, E,, is the zero- 
point energy given as E,, = %kBOD, and D(O,/T)  is the Debye function [13]. The 
vibrational entropy is given by - 

S$')(r,T) = 3kB{$D(O,/T)  - In[l - exp(-OD/T)]}. (3) 
It should be noted that, by following the original prescription of Morruzi et a1 
191, the Debye temperature 0, is given as 41.63(rB/M)11Z, where M is the 
average mass, the numerical constant is a scaling factor which gives approximate 
agreement with empirical data, and the bulk modulus B is derived from the 
calculated binding curve. Also, the Grilneisen constant y is evaluated from y = 
-1 - (V/2)[(aZP/EWZ)/(aP/i3V)] where P is the pressure obtained from the 
binding curve and V is the volume. This particular expression for y is identical with 
that originally proposed by Dugdale and MacDonald [28]. 

The ordinary procedure to derive a set { v i }  of effective interaction energies is 
based on the CEM applied to the electronic energy E:?)(?-), which merely introduces 
the r-dependence to the internal energy. On the other hand, the present method uses 
the CEM on the free energy F(")(r, T) of each phase derived from equations (lH3): 

vi(., T )  = ~ { E ! " ) } - ' F ( " ) (  T,  T) (4) 
m 

where {E!")}  is the correlation function for a cluster i of phase m. Note that, since 
the CEM in the present study is performed on the total energies of the five distinct 
structures (m = 1,. . . , 5) ,  the effective interaction energies are derived for four 
kinds of nearest-neighbour cluster up to regular tetrahedron as well as U,,, the energy 
of the complete random solid solution at 50 at.%. 

Once the effective interaction energies have been derived, the free-energy 
functional of a phase specified by { E i )  is given by 

where S({tj}) is the mixing entropy of a tixed FCC lattice. The rest of the procedure 
is U, minimize the freeenergy functional F with respect to both the lattice constant 
T and the set { E i }  of correlation functions at a given temperature 2'. It is noted 
that the tetrahedron-ctahedron approximation 121,221 of the cvhi is employed to 
evaluate the configurational entropy term in equation (5). 

Finally, the set { v i ( r ,T ) ]  of effective interaction energies and the set {B} 
of optimized correlation functions yield the heats of formation A H ( c , T )  of a 
disordered solid solution through 

A H ( c ,  T )  = C V ~ ( T ,  T)Ef - (1 - c ) H A ( T )  - cHB(T)  (6) 
i= l  

where HA and HB are the cohesive energies for metals A and B, respectively, and c 
is the concentration of element B linearly related to the point correlation function cl 
through c = 1 - 2c1. 
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3. Results and discussion 

Figures 1, 2 and 3 show the heats of formation of a disordered solid solution for the 
Au-Cu, Au-Pd and Au-Ag systems, respectively. In each figure, the experimental 
results are shown as thin full curves with open Circles [14-161, while the theoretical 
results with and without [ll, 171 thermal vibration effects are indicated as bold curves 
and broken curves, respectively. One can see that a great improvement is achieved 
by the present calculation with the thermal vibration effects for the Au-Cu system. 
The downward shift of the entire curve implies that the disordered phase is stabilized 
by the contribution of the thermal vibration effects. For both Au-Pd and Au-Ag 
systems for which fairly reasonable agreement between experiment and theory have 
already been achieved without thermal vibration effects, no signscant differences are 
observed. It is believed that the discrepancies between the calculated curves and the 
experimental curve for the Au-Pd system are due to systematic overestimation of the 
heats of formation of ordered compounds in their ground states. We would like to 
emphasize, however, that the correct topological features, characterized by asymmetly 
of experimental curve, are correctly reproduced by the calculations. 

Fenre 1. Heals of formation of a disordered solid solution for the Cu-Au system at 
720 K, where the horizontal axis is the alomic concentration of Au: . . .O.. ., first- 
principles calculation Ill] without thermal vibration effecB; -0-, present mulls 
with thermal vibration effeas; -0-, experimental data [141. 

Also, it should be pointed out that the ‘double minima’ appearing in the 
theoretical curves for Au-Cu are artefacts introduced mainly by the CEM when 
performed on a limited set of ordered compounds. Close obsemtion of the 
theoretical curve suggests that the curve is pulled downwards in the vicinity of the 
CkAu and AuCu stoichiometries, which implies that the heats of formation of these 
two ordered compounds in the ground state (as indicated by 
are overly reflected via equations (1) and (4)-(6). A detailed analysis is under way 
with an increasing number of ordered compounds including fictitious compounds 
using the cluster expansion formula, equation (4), which is expected to smooth the 
entire curve. 

and 
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Figam 2. Heats of formation of a disordered 
solid solution for the Au-Pd sys'em at 298 K 
as a function of the atomic concentration of 
Au. The c u m  have the same meanings as in 
figure 1, except thal the experimental data were 
taken from [U]. 

Figure 3. Heats of formation of a disordered solid solution 
for the Au-Ag system at 800 K as a function of the atomic 
concentration of Au. The c u w a  have the Same meanings 
as in figure 1, except that the experimental data were taken 
from [16]. 

Fwrc 4. Heals of formation of Cu, 
CuAu (Llo) and Au as functions of the 
lattice constant: - - -, electronic energy 
conlribution E(")(r) at T = 720 K for 
each phase; -, F[")(r,T) at  T = 
720 K for each phase. r, and Q indicate 
the equilibrium lattice constants for 
the E(*)(r) and F('")(r,T) cuwes, 
respectively. 

In order to clarify the stabilization mechanism of the disordered phase by the 
thermal vibration effects, the heats of formation curves for Cu, Au and CuAu (Ll,) 
are magnified in figure 4. For each phase, the broken curves and full curves represent 
ldm)(r) and F(m)(r ,T  = 720 K), respectively. Hence, the former indicate the heats 
of formation without thermal vibration effects, while the latter represent the heats of 
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formation with thermal vibration effects It should be noted that the reference state of 
the heats of formation is the segregation limit at each temperature. The equilibrium 
lattice constants, which correspond to the minima of the energy curves, elongate when 
vibrational effects are included in the calculation, which suggests thermal expansion. 

Another important feature of the energy curves is that the cuwature at the 
equilibrium lattice constant, which is related to the bulk modulus of the solids, 
changes when vibrational effects are taken into account. This 'softening' may be 
caused by elongation of the lattice constant 

The heats of formation of an alloy can be formally decomposed into two factors: 
the elastic energy and the chemical driving force. The elastic energy expended to 
form a phase with the equilibrium lattice constant r' may be estimated as 

where c* is the concentration of Au in the phase of interest It can be easily seen in 
figure 4 that the elastic energy to form an L1, ordered phase with the lattice constant 
rl at T = 0 K is greatly reduced at T = 720 K by the thermal expansion of the 
lattice constant from rl to rz and the lattice softening manifested by the reduction in 
the curvature of the heats of formation curves. Essentially the same arguments can 
be applied to account for the relaxation effect. 

The temperature dependences of the bulk modulus for Au and Cu are calculated 
and compared with the experimental dependences [18,19] in figures 5(a) and 5(6), 
respectively. The full curves and broken curves indicate the present calculations 
and the experimental measurements, respectively. Although the experimental data 
are available in a limited temperature range, the calculation produces the correct 
tendency. The deviation of the calculated results from the experimental data can 
be ascribed to the inevitable error originally involved in the overestimated cohesive 
energy, which is thought to be a genuine error in electronic structure calculations 
based on the local-density approximation in the density-functional theory 1261. It is 
noticeable that the bulk modulus has quite a large temperature dependence which 
leads to the relaxation mechanism described above. Furthermore, it should be 
recognized that such a mechanism is manifested for a system which has a large 
ditrerence between the atomic sizes of the constituent elements such as the Au-Cu 
system. 

- - -___  Calc. 
--._ - - _ _  

n 
--_ - _  -_ - - -__ D --. -. 

x 

Temperature IKI Temperature IK1  
Figure 5. Temperature dependence of fhe bulk modulus for (a) Au and (6) Cu: -, 
experimental data [18,19]; - - -, calculated results 
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The effective interaction energies extracted for the Au-Cu system with thermal 
vibration effects at 7' = 720 K are compared with those at 0 K in figure 6. In addition 
to the shift of the entire curve towards the right-hand side due to thermal expansion, 
a significant downward shift is also obselved for U,,, which is another indication of 
the stabilization of the disordered phase. 

-0.05 

Figure 6. Extracted eiieztive interaction energies for the Au-Cu system, where vi 
indicates an i-pint cluster, and "3 and v4 are blh quite small and situated near the 
zero-energy level: - - -, electronic mnvibution only for each cluster energy; -, values 
with thermal ribration effects at 720 K. 

Although the calculation of the phase diagram and thermodynamic quantities of 
the Au-Cu system have been attempted by various methods, a fully successful result 
has not yet been achieved by the first-principles calculations. The disagreemens 
have been heavily ascribed to the neglect of the local distortion effect [27] which is 
inseparable from the lattice thermal vibration. 

The theory of local distortion is proposed by Khachaturyan [ZO] based on the 
harmonic approximation. The essential quantity required to estimate the relaxation 
energy is the dynamical matrix which can, in principle, be obtained by the phonon 
dispersion relation. The major stumbling block, however, is the fact that the local 
distortion alters the crystal lattice symmetry and the validity of the CVM for a cubic 
system is anticipated to break down. Moreover, the harmonic approximation does 
not lead to thermal expansion. 

The method adopted in the present study, on the other hand, incorporates the 
lattice softening due to the thermal expansion of a uniformly deformable lattice. 
Although the Debye model is a primitive model and the correctness of the description 
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is, in general, limited to the low-temperature portion for which the long-wave phonon 
is dominant, the essential features of thermal expansion and the phonon-related 
properties are well reproduced. A most satisfactory result may be obtained by 
incorporating the thermal vibration effects into a lattice which is allowed to distort 
locally, which is the next task in this series of first-principles calculations. We 
believe that the present study takes an important step towards the fuUy satisfactory 
achievement of fust-principles calculations. 

Acknowledgments 

This work was carried out under the Visiting Researcher‘s Programme of the Institute 
for Solid State Physics, the University of Dkyo. We acknowledge support hy a Grant- 
in-Aid for Cooperative Research from the Japanese Ministry of Education, Science 
and Culture. One of the authors (TM) acknowledges support by a Grant for the 
International Research Project from the NEDO, Japan, and another (ST) for financial 
support by the Japan Society for the Promotion of Science. 

References 

111 Mohri T. lkrakura K. Oguchi T and Watanabe K 1988 Phme lhmfomorion ‘87 ed G W Lorimer 

[Z] Mohri T and Watanabe K 1988 l?m Iron S f d  hn Japan 28 783 
[3] Wd S H, Mbaye A A, Ferreira L G and Zunger A 1987 Phys. Rev! B 36 4163 
[4] Sigli C, Kosugi M and Sanchez J M 1986 Phys Rn! Lm 57 253 
[S] lhrchi P E A, Sluiter M, Pinski F J. Johnson D D, Nickolson D M, Stocks G M and Staunton J B 

1991 P h p  Rev Lnt 67 1779 
[a] Connolly J W and Williams A R 1983 Phys. Rm B 27 5169 
[7] Kikuchi R 1951 Phys. Rex 81 998 
[SI Binder K 1986 Monfe Carlo Mefhoh m Sfahfical Physics (Springer Cwrmr Topics m Physics 7)  ed 

K Binder (Berlin: Springer) p 1 
[9] MO& V 

(London: Institute of Metals) p 433 

Janak J F and Schwarz K 1988 Phys. Rex B 37 790 
[lo] Becker J D, Sanchez J M and Tien J K 1991 Mafm Re. Soc. Symp, Roc. 213 113 
Ill] Mohri M k u r a  K, Oguchi T and Wdtanabe K 1988 Acta MetoU 36 547 
1121 Mohri T. M k u r a  K ’hkimwa S and Sanchez J M 1’391 Acto MeralL 39 493 
i13j Mayer J E and Mayer M G 1977 SmLnical Mechm’cs (New York Wiley) 
1141 Orr R L 1960 Acfa MefaU 8 489 
1151 Darbv J B Jr 1966 Acla M d  14 265 
i16j Whit; J I Orr R L and Hultgren R 1957 Acfa MetalL 5 747 
[17] Mohri T, Tbkizawa S and Erakura K 1993 Malm Tram Japan I n n  Mer 31 315 
[IS] Ovenon W C Jr and Gaffney J 1955 Phys Rm 98 969 
[19] Neighbours J R and Ale= 0 A 1958 Phys RN. 111 707 

Collard S M and Mclellan R B 1991 Acfa MeraU 39 3143 
[20] Khachaturyan A G 1983 Theory ofSrmcarral Pommdom m Solids (New York Wiley) 
[Zl] Mohri T, Sanchez J M and de Fontaine D 1985 Acfa Mcfalf 33 1171 
[22] Sanchez J M and de Fontaine D 1978 Phy. Rm B 17 2926 
[U] Williams A R, Kubler J and Gelaft C D Jr 1979 Php RN. B 19 6094 
[24] Koelling D D and Harmon B N 1977 .I Phys C: Sdid Sfare P h p  10 3107 
[25] P b w a  S, l h k u r a  K and Mohri T 1989 Phys Rm B 39 5792 
[26] Kohn W and Sham L J 1965 Phyz &. A 140 1133 

Hohenberg P and Kohn W 1964Phys Rm B 136 864 
[27] Erakura K, Mohn T and Oguchi T 1989 Marer Sci Fonun 37 39 
[ZS] Dugdale J S and MacDonald D K C 1953 Phys Rn! 89 832 


